Name: $\qquad$ [printed]
"On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work."
$\qquad$ [signature]

## Exam II, February 24, 2011, 125 pts

Polymer Chemistry, CHEM 466, Spring 2011 Texas A\&M University, College Station, TX, USA

1. As described in the textbook (Hiemenz, P. C.; Lodge, T. P. Polymer Chemistry, 2nd Edition; CRC Press, Taylor \& Francis Group: Boca Raton, FL, USA, 2007) problem 2.3, heating of $\beta$-carboxymethyl caprolactam at $270^{\circ} \mathrm{C}$ promotes isomerization to an $A B$ monomer, which then undergoes polymerization to afford a polyimide.
(a) Provide balanced chemical reaction equations that illustrate the chemical structures for the polymers and any condensation by-products for the two stages of polymerization shown below. [10 points]



it is difficult to draw the parantheses, w/ out exaggeration of the

Name: $\qquad$ [printed]
(b) Label the four plots of the figure below (Figure 2.4 of the textbook) to indicate which data are $[A] /[A]_{0}$ vs. time and $N_{n}$ (also called $D P_{n}$ ) vs. time for a catalyzed $A B$ polymerization reaction and which data are $[A][A]_{0}$ vs. time and $\mathrm{N}_{\mathrm{n}}$ vs. time for an uncatalyzed AB polymerization reaction. [8 points]

$\qquad$ ANSWER KEY
2. For the polycarbonate structure and ${ }^{1} \mathrm{H}$ NMR spectrum given:

[you can see that $3 \mathrm{H}_{\mathrm{c}}$ is actually $(3 n) \mathrm{H}_{c}$ and $1 \mathrm{H}_{\mathrm{d}}$ is actually $(1 n+1) \mathrm{H}_{d}$ ]
(a) Determine the degree of polymerization. [15 points]
use $9 \mathrm{H}_{a}$ or $6 \mathrm{H}_{b}$ for det'm of chair end relative \#

$$
\text { for } 9 H_{a}: 9 H_{a}=4 . \mathrm{mm} \Rightarrow H_{a}=0.44
$$

use $3 \mathrm{H}_{c}$ or $1 \mathrm{H}_{d}$ for detim of repeat units ( $\mathrm{H}_{d}$ complicated by 1 chain end)

$$
\text { for } 3 H_{c}: 3 H_{c}=19 \mathrm{~mm} \Rightarrow H_{c}=6.33 \quad \frac{H_{c}}{H_{a}}=14.4 \Rightarrow D P_{n}=14
$$

(b) Calculate the number-average molecular weight. [10 points]
repeat unit is $C_{25} H_{18} N_{2} O_{5}$; ignoring isotopic abundance, repeat unit mass $=426 \mathrm{~g} / \mathrm{mol}\left\{m_{n}=14(426 \mathrm{~g} / \mathrm{mol})+\right.$ chain ends are $\mathrm{C}_{6} \mathrm{H}_{15}$ Si, mass $\left.=115 \mathrm{~g} / \mathrm{mol}\right\}$

$$
\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}, \text { mass }=67 \mathrm{~g} / \mathrm{mol}
$$

$$
=6146 \mathrm{~g} / \mathrm{mol}_{3}
$$

$\omega / 2$ sig figs $\Rightarrow 6100 \mathrm{~g} / \mathrm{mol}$

Name: $\qquad$ [printed]
(c) Provide the structure for a monomer that could be used to produce this polymer. [5 points]

(d) Based upon your monomer and the wavy line included in the structure above, state the type of macromolecular architecture of this polycarbonate. [2 points] hypenbranched polymer
(e) Draw-out the chemical structure, showing a sufficient number of repeat units to be able to illustrate the four different types of units that this structure may

(f) Label those different types of units upon your structure above. [4 points]
3. For the silicone adhesive components shown below:
(a) Draw the chemical reactions that are involved during the curing of the
 materials. [10 points]

$$
\begin{aligned}
& \xrightarrow[\text { hydrolysis }]{3 \mathrm{H}_{2} \mathrm{O}} \stackrel{\substack{\mathrm{OH} \mathrm{~A}_{3} \\
\mathrm{~S}_{1}-\mathrm{OH} \\
\mathrm{OH}}}{\substack{\text { OH } \\
\mathrm{OH}}}
\end{aligned}
$$

siloxane formation between $A_{3}+B_{2}$
(b) Draw the structure for the crosslinked network product. [10 points]
the $A_{3}$ derived si units generate the $x$ link es between
the $B_{2}$ pre-polyners

(c) Calculate the gel point (reminder: $\mathrm{p}_{\mathrm{c}}=2 / \mathrm{f}_{\mathrm{av}}$ and $f_{a v}=\frac{\Sigma N i f i}{\Sigma N i}$ for a stoichiometric balance of functional groups). [5 points]
for $A_{3}+B_{2}$, stoichiometric balance requires $2 A_{3}+3 B_{2}$

$$
\Rightarrow f_{a v}=\frac{2.3+3.2}{2+3}=2.4 \text { and } P_{c}=\frac{2}{2.4}=0.83 \Rightarrow 83 \%_{5} \mathrm{gel} p^{t} \text {. }
$$

Name: ANSWER KEY [printed]
4. Provide detailed electron arrow-pushing mechanisms that allow for the establishment of the amide and ester linkages in DSM's Hybrane ${ }^{\circledR}$ polyesteramides.
(a) Draw the mechanism for the reaction of phthalic anhydride with diisopropanolamine to give an initial $\beta$-hydroxyalkylamide. [6 points]




Name: ANSOER KEY [printed]
(b) Draw the mechanism for the reactions between two of the initial $\beta$-hydroxyalkylamides, which involve an oxazolinium ion intermediate, to give the esteramide structure shown. [10 points]







$$
\stackrel{-\mathrm{H}_{2} \mathrm{O}}{\rightleftharpoons}
$$




(c) Suggest two applications that may take advantage of the hyperbranched polymer architecture, and the unique physical and chemical properties that result. [4 points]
the artide by P. Froehling, J. Polym. Sci, Part A: Polys. Chem. 2004, 42,3110-3115. suggested several possibilities including polymer hoots for dyes t use as additions to polypropylene fibers, aystalaisation inhibitors for bill recovery, paper coatis, and other w; geo Freest aside

Name: ANSWER KEY [printed]
5. There are several errors in some of the chemical structures shown on page 160 of your textbook.

(a) Identify the errors by circling them in the structures above. [5 points]

Name: ANSWER REY [printed]
(b) Provide a retrosynthesis for the following hybrid dendritic-linear star polymer structure. [15 points]




Equations, which may be of use:

Number-average molecular weight:

$$
\mathrm{M}_{\mathrm{n}}=\frac{\sum \mathrm{N}_{\mathrm{x}} \mathrm{M}_{\mathrm{x}}}{\sum \mathrm{~N}_{\mathrm{x}}}
$$

$$
N_{x}=\# \text { moles of polymer chains having molecular weight, } M_{x}
$$

Weight-average molecular weight:

$$
\mathrm{M}_{\mathrm{w}}=\Sigma \mathrm{w}_{\mathrm{x}} \mathrm{M}_{\mathrm{x}}=\frac{\sum \mathrm{N}_{\mathrm{x}} \mathrm{M}_{\mathrm{x}}^{2}}{\Sigma \mathrm{~N}_{\mathrm{x}} \mathrm{M}_{\mathrm{x}}}
$$

$w_{x}=w t$ fraction of polymer chains having molecular weight, $M_{x}=\frac{N_{x} M_{x}}{\sum N_{x} M_{x}}$

Degree of polymerization:

$$
\begin{gathered}
\mathrm{DP}_{\mathrm{n}}=\frac{1}{1-\mathrm{c}} \\
\mathrm{c}=\text { extent of conversion of functional groups }
\end{gathered}
$$

Polydispersity index:

$$
\mathrm{PDI}=\frac{M_{w}}{M_{n}}
$$

Critical extent of reaction:

$$
\mathrm{p}_{\mathrm{c}}=\frac{2}{\mathrm{f}_{\mathrm{av}}}
$$

Average degree of monomer functionality:

$$
\mathrm{f}_{\mathrm{av}}=\frac{\Sigma \mathrm{N}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}}{\Sigma \mathrm{~N}_{\mathrm{i}}}
$$

## Textbook:

Hiemenz, P. C.; Lodge, T. P. Polymer Chemistry, $2^{\text {nd }}$ Edition; CRC Press, Taylor \& Francis Group: Boca Raton, FL, USA, 2007

